Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979173

RESUMO

Disturbances, both natural and anthropogenic, influence the patterning of species and species traits. The shift in species composition and distribution pattern of functional traits can demonstrate if the community is resistant, sensitive or resilient to the disturbance. Based on species- and trait-based approaches, we examined the response of the earthworm community to changing hydrologic conditions caused by the artificial drainage of mountain fens, in which cumulative effects of disturbance events over space and time are much less dynamic than in riverine wetlands. We hypothesized that the drainage-related changes of mountain fen peat soils have an effect on the earthworm community composition and its functional structure. We assume that the shift in species composition and value of community-weighted functional traits reflect changes in the resilience or resistance of the earthworm community to environmental change. Our results demonstrate that the total density of earthworms was almost three times lower under drained conditions compared to natural ones. Artificial drainage of fens had a neutral effect on the species-based diversity indices. However, there were species-specific traits that responded to hydrologic changes and which led to the species' replacements and to the co-occurrence of eurytopic, surface-browsing and more drought- and low-pH-resistant earthworm species in the drained fens. Based on these results, we conclude that abiotic-based environmental filtering was the main process responsible for sorting earthworms according to species and traits in the disturbed hydrologic conditions. The greater earthworm functional trait variations in semi-natural hydrologic conditions emphasizes the impact of transient dynamics in an altered disturbance regime on the earthworm assembly. Results also showed that in the changing hydrologic conditions of mountain fens, the functional trait approach revealed only slightly more predictive power than the taxonomic one, but it proved better with processes responsible for earthworm species filtering.

2.
Sci Total Environ ; 860: 160550, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36460115

RESUMO

In the glacier forelands, microbes play a fundamental role in soil development and shaping the vegetation structure. Such ecosystems represent various stages of soil development and are, therefore, an excellent place to study the interrelationship between soil, plants, and microorganisms. The aim of the study was to assess the effects of vegetation and soil physicochemical properties developing after glacier retreat on soil microbial communities. Specifically, abundance, species richness and the composition of arbuscular mycorrhizal fungi (AMF), as well as microbial biomass and community structure in soils were compared between plots established in 800-meter transects of three glacier forelands in northern Sweden. The cover of vascular plants and cryptogams, soil C content, AMF spore density and species richness, AMF biomass indicators, total microbial biomass, and bacterial phospholipid fatty acids (PLFA) were significantly and positively related to the distance from the glacier terminus. On the other hand, macronutrient concentrations and pH decreased along with increasing distance. No significant impact of the distance from the glacier terminus on the ratio fungal/bacterial PLFA was observed. Moreover, we found a significant effect of both glacier and the distance from the glacier terminus on the microbial community structure. AMF species richness and spore density in the glacier forelands were generally low, which is probably due to a limited supply of inoculum in primary successional ecosystems. Most microbial biochemical markers and AMF parameters were positively associated with the number of arbuscular mycorrhizal plant species and vascular plant and lichen cover as well as C content in soil, whereas negatively with soil macronutrients and pH. This could be related to an increase in plant cover and a decrease in soil nutrient levels as plant succession progresses. Our results showed that vegetation, soil C content, and microbial communities are interlinked and exhibit concordant patterns along successional gradients.


Assuntos
Microbiota , Micorrizas , Traqueófitas , Solo/química , Camada de Gelo/microbiologia , Biomassa , Microbiologia do Solo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36294277

RESUMO

Arctic soils may hold potentially toxic elements (PTE); PTE can provide evidence of past or recent pollution. In this study, five soil profiles located on Oscar II Land (Kaffiøyra) were studied to (i) evaluate the ecological status of Kaffiøyra's soils based on the determination of the possible accumulation of PTE using pollution indices; and (ii) determine the possible origin of PTE enrichment (local factors vs. long-range sources) depending on the distance from the sea. The soils were tested with standard soil science methods. The contamination of five soils was assessed by a wide spectrum of pollution soil indices: Enrichment Factor (EF), Geoaccumulation Index (Igeo), Potential Ecological Risk (RI), Pollution Load Index (PLI), and Probability of Toxicity (MERMQ). EF values calculated based on Cd, Cr, Cu, Pb and Zn content indicated an anthropogenic origin of the pollution. Values of Igeo showed the highest pollution with Cd, while CSI and MERMQ values indicated the highest Cd and Pb levels, but only in the soils located closest to the coast. RI values suggested that soils were under a strong or very strong potential ecological risk, whereas PLI confirmed the high probability of soil quality reduction. Enrichment with PTE has been conditioned by both local (natural) and long-distance (anthropogenic) factors. Among the local factors, parent material was highly relevant. The effect of long-distance anthropogenic factors, especially from European, large industrial centres, was manifested by the high content of PTE in soils located closest to the coastlines, delivered by a wet deposition and sea aerosols. The monitoring and assessment of arctic soil quality are useful practices for the verification of the sources of PTE pollution and the development of methods that can contribute to the protection and maintenance of these vulnerable ecosystems.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Poluentes do Solo/análise , Metais Pesados/análise , Monitoramento Ambiental , Cádmio , Ecossistema , Svalbard , Efeitos Antropogênicos , Chumbo , Medição de Risco , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...